Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Boosting Adversarial Transferability via Residual Perturbation Attack (2508.05689v1)

Published 6 Aug 2025 in cs.CV, cs.CR, and cs.LG

Abstract: Deep neural networks are susceptible to adversarial examples while suffering from incorrect predictions via imperceptible perturbations. Transfer-based attacks create adversarial examples for surrogate models and transfer these examples to target models under black-box scenarios. Recent studies reveal that adversarial examples in flat loss landscapes exhibit superior transferability to alleviate overfitting on surrogate models. However, the prior arts overlook the influence of perturbation directions, resulting in limited transferability. In this paper, we propose a novel attack method, named Residual Perturbation Attack (ResPA), relying on the residual gradient as the perturbation direction to guide the adversarial examples toward the flat regions of the loss function. Specifically, ResPA conducts an exponential moving average on the input gradients to obtain the first moment as the reference gradient, which encompasses the direction of historical gradients. Instead of heavily relying on the local flatness that stems from the current gradients as the perturbation direction, ResPA further considers the residual between the current gradient and the reference gradient to capture the changes in the global perturbation direction. The experimental results demonstrate the better transferability of ResPA than the existing typical transfer-based attack methods, while the transferability can be further improved by combining ResPA with the current input transformation methods. The code is available at https://github.com/ZezeTao/ResPA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: