Papers
Topics
Authors
Recent
2000 character limit reached

Zero-Shot Retrieval for Scalable Visual Search in a Two-Sided Marketplace

Published 31 Jul 2025 in cs.IR and cs.AI | (2508.05661v1)

Abstract: Visual search offers an intuitive way for customers to explore diverse product catalogs, particularly in consumer-to-consumer (C2C) marketplaces where listings are often unstructured and visually driven. This paper presents a scalable visual search system deployed in Mercari's C2C marketplace, where end-users act as buyers and sellers. We evaluate recent vision-LLMs for zero-shot image retrieval and compare their performance with an existing fine-tuned baseline. The system integrates real-time inference and background indexing workflows, supported by a unified embedding pipeline optimized through dimensionality reduction. Offline evaluation using user interaction logs shows that the multilingual SigLIP model outperforms other models across multiple retrieval metrics, achieving a 13.3% increase in nDCG@5 over the baseline. A one-week online A/B test in production further confirms real-world impact, with the treatment group showing substantial gains in engagement and conversion, up to a 40.9% increase in transaction rate via image search. Our findings highlight that recent zero-shot models can serve as a strong and practical baseline for production use, which enables teams to deploy effective visual search systems with minimal overhead, while retaining the flexibility to fine-tune based on future data or domain-specific needs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.