Papers
Topics
Authors
Recent
2000 character limit reached

Investigation of Speech and Noise Latent Representations in Single-channel VAE-based Speech Enhancement (2508.05293v1)

Published 7 Aug 2025 in eess.AS

Abstract: Recently, a variational autoencoder (VAE)-based single-channel speech enhancement system using Bayesian permutation training has been proposed, which uses two pretrained VAEs to obtain latent representations for speech and noise. Based on these pretrained VAEs, a noisy VAE learns to generate speech and noise latent representations from noisy speech for speech enhancement. Modifying the pretrained VAE loss terms affects the pretrained speech and noise latent representations. In this paper, we investigate how these different representations affect speech enhancement performance. Experiments on the DNS3, WSJ0-QUT, and VoiceBank-DEMAND datasets show that a latent space where speech and noise representations are clearly separated significantly improves performance over standard VAEs, which produce overlapping speech and noise representations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.