Papers
Topics
Authors
Recent
2000 character limit reached

Integrated Influence: Data Attribution with Baseline (2508.05089v1)

Published 7 Aug 2025 in cs.LG and cs.AI

Abstract: As an effective approach to quantify how training samples influence test sample, data attribution is crucial for understanding data and model and further enhance the transparency of machine learning models. We find that prevailing data attribution methods based on leave-one-out (LOO) strategy suffer from the local-based explanation, as these LOO-based methods only perturb a single training sample, and overlook the collective influence in the training set. On the other hand, the lack of baseline in many data attribution methods reduces the flexibility of the explanation, e.g., failing to provide counterfactual explanations. In this paper, we propose Integrated Influence, a novel data attribution method that incorporates a baseline approach. Our method defines a baseline dataset, follows a data degeneration process to transition the current dataset to the baseline, and accumulates the influence of each sample throughout this process. We provide a solid theoretical framework for our method, and further demonstrate that popular methods, such as influence functions, can be viewed as special cases of our approach. Experimental results show that Integrated Influence generates more reliable data attributions compared to existing methods in both data attribution task and mislablled example identification task.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.