Papers
Topics
Authors
Recent
2000 character limit reached

Retrieval-Augmented Water Level Forecasting for Everglades (2508.04888v1)

Published 6 Aug 2025 in cs.LG

Abstract: Accurate water level forecasting is crucial for managing ecosystems such as the Everglades, a subtropical wetland vital for flood mitigation, drought management, water resource planning, and biodiversity conservation. While recent advances in deep learning, particularly time series foundation models, have demonstrated success in general-domain forecasting, their application in hydrology remains underexplored. Furthermore, they often struggle to generalize across diverse unseen datasets and domains, due to the lack of effective mechanisms for adaptation. To address this gap, we introduce Retrieval-Augmented Forecasting (RAF) into the hydrology domain, proposing a framework that retrieves historically analogous multivariate hydrological episodes to enrich the model input before forecasting. By maintaining an external archive of past observations, RAF identifies and incorporates relevant patterns from historical data, thereby enhancing contextual awareness and predictive accuracy without requiring the model for task-specific retraining or fine-tuning. Furthermore, we explore and compare both similarity-based and mutual information-based RAF methods. We conduct a comprehensive evaluation on real-world data from the Everglades, demonstrating that the RAF framework yields substantial improvements in water level forecasting accuracy. This study highlights the potential of RAF approaches in environmental hydrology and paves the way for broader adoption of adaptive AI methods by domain experts in ecosystem management. The code and data are available at https://github.com/rahuul2992000/WaterRAF.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.