Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Understanding protein function with a multimodal retrieval-augmented foundation model (2508.04724v1)

Published 5 Aug 2025 in q-bio.QM and cs.LG

Abstract: Protein LLMs (PLMs) learn probability distributions over natural protein sequences. By learning from hundreds of millions of natural protein sequences, protein understanding and design capabilities emerge. Recent works have shown that scaling these models improves structure prediction, but does not seem to improve mutation understanding and representation quality for protein function prediction. We introduce PoET-2, a multimodal, retrieval-augmented protein foundation model that incorporates in-context learning of family-specific evolutionary constraints with optional structure conditioning to learn generative distributions over protein sequences. PoET-2 uses a hierarchical transformer encoder that is equivariant to sequence context ordering and a dual decoder architecture with both causal and masked language modeling objectives, allowing PoET-2 to operate in both fully generative and bidirectional representation learning modes. PoET-2 achieves state-of-the-art performance on zero-shot variant effect prediction, excelling at scoring variants with multiple mutations and challenging indel mutations. In supervised settings, PoET-2 embeddings outperform previous methods for learning sequence-function relationships, especially with small datasets. This work highlights the benefits of combining retrieval augmentation with multimodal, family-centric modeling for advancing protein foundation models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 9 tweets and received 88 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com