Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Symmetric modules over the infinite polynomial ring I: nilpotent quotients (2508.04624v1)

Published 6 Aug 2025 in math.AC and math.RT

Abstract: Cohen proved that the infinite variable polynomial ring $R=k[x_1,x_2,\ldots]$ is noetherian with respect to the action of the infinite symmetric group $\mathfrak{S}$. The first two authors began a program to understand the $\mathfrak{S}$-equivariant algebra of $R$ in detail. In previous work, they classified the $\mathfrak{S}$-prime ideals of $R$. An important example of an $\mathfrak{S}$-prime is the ideal $\mathfrak{h}_s$ generated by $(s+1)$st powers of the variables. In this paper, we study the category of $R/\mathfrak{h}_s$-modules. We obtain a number of results, and mention just three here: (a) we determine the Grothendieck group of the category; (b) we show that the Krull--Gabriel dimension is $s$; and (c) we obtain generators for the derived category. This paper will play a key role in subsequent work where we study general modules.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.