Emotion Detection Using Conditional Generative Adversarial Networks (cGAN): A Deep Learning Approach (2508.04481v1)
Abstract: This paper presents a deep learning-based approach to emotion detection using Conditional Generative Adversarial Networks (cGANs). Unlike traditional unimodal techniques that rely on a single data type, we explore a multimodal framework integrating text, audio, and facial expressions. The proposed cGAN architecture is trained to generate synthetic emotion-rich data and improve classification accuracy across multiple modalities. Our experimental results demonstrate significant improvements in emotion recognition performance compared to baseline models. This work highlights the potential of cGANs in enhancing human-computer interaction systems by enabling more nuanced emotional understanding.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.