Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Inter-Task Attention for Multitask Transformer Models (2508.04422v1)

Published 6 Aug 2025 in cs.CV

Abstract: In both Computer Vision and the wider Deep Learning field, the Transformer architecture is well-established as state-of-the-art for many applications. For Multitask Learning, however, where there may be many more queries necessary compared to single-task models, its Multi-Head-Attention often approaches the limits of what is computationally feasible considering practical hardware limitations. This is due to the fact that the size of the attention matrix scales quadratically with the number of tasks (assuming roughly equal numbers of queries for all tasks). As a solution, we propose our novel Deformable Inter-Task Self-Attention for Multitask models that enables the much more efficient aggregation of information across the feature maps from different tasks. In our experiments on the NYUD-v2 and PASCAL-Context datasets, we demonstrate an order-of-magnitude reduction in both FLOPs count and inference latency. At the same time, we also achieve substantial improvements by up to 7.4% in the individual tasks' prediction quality metrics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.