Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Marginal Stochastic Flow Matching for High-Dimensional Snapshot Data at Irregular Time Points (2508.04351v1)

Published 6 Aug 2025 in cs.LG and cs.NE

Abstract: Modeling the evolution of high-dimensional systems from limited snapshot observations at irregular time points poses a significant challenge in quantitative biology and related fields. Traditional approaches often rely on dimensionality reduction techniques, which can oversimplify the dynamics and fail to capture critical transient behaviors in non-equilibrium systems. We present Multi-Marginal Stochastic Flow Matching (MMSFM), a novel extension of simulation-free score and flow matching methods to the multi-marginal setting, enabling the alignment of high-dimensional data measured at non-equidistant time points without reducing dimensionality. The use of measure-valued splines enhances robustness to irregular snapshot timing, and score matching prevents overfitting in high-dimensional spaces. We validate our framework on several synthetic and benchmark datasets, including gene expression data collected at uneven time points and an image progression task, demonstrating the method's versatility.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.