Papers
Topics
Authors
Recent
Search
2000 character limit reached

Length Matters: Length-Aware Transformer for Temporal Sentence Grounding

Published 6 Aug 2025 in cs.CV | (2508.04299v1)

Abstract: Temporal sentence grounding (TSG) is a highly challenging task aiming to localize the temporal segment within an untrimmed video corresponding to a given natural language description. Benefiting from the design of learnable queries, the DETR-based models have achieved substantial advancements in the TSG task. However, the absence of explicit supervision often causes the learned queries to overlap in roles, leading to redundant predictions. Therefore, we propose to improve TSG by making each query fulfill its designated role, leveraging the length priors of the video-description pairs. In this paper, we introduce the Length-Aware Transformer (LATR) for TSG, which assigns different queries to handle predictions based on varying temporal lengths. Specifically, we divide all queries into three groups, responsible for segments with short, middle, and long temporal durations, respectively. During training, an additional length classification task is introduced. Predictions from queries with mismatched lengths are suppressed, guiding each query to specialize in its designated function. Extensive experiments demonstrate the effectiveness of our LATR, achieving state-of-the-art performance on three public benchmarks. Furthermore, the ablation studies validate the contribution of each component of our method and the critical role of incorporating length priors into the TSG task.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.