Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

DocVCE: Diffusion-based Visual Counterfactual Explanations for Document Image Classification (2508.04233v1)

Published 6 Aug 2025 in cs.CV

Abstract: As black-box AI-driven decision-making systems become increasingly widespread in modern document processing workflows, improving their transparency and reliability has become critical, especially in high-stakes applications where biases or spurious correlations in decision-making could lead to serious consequences. One vital component often found in such document processing workflows is document image classification, which, despite its widespread use, remains difficult to explain. While some recent works have attempted to explain the decisions of document image classification models through feature-importance maps, these maps are often difficult to interpret and fail to provide insights into the global features learned by the model. In this paper, we aim to bridge this research gap by introducing generative document counterfactuals that provide meaningful insights into the model's decision-making through actionable explanations. In particular, we propose DocVCE, a novel approach that leverages latent diffusion models in combination with classifier guidance to first generate plausible in-distribution visual counterfactual explanations, and then performs hierarchical patch-wise refinement to search for a refined counterfactual that is closest to the target factual image. We demonstrate the effectiveness of our approach through a rigorous qualitative and quantitative assessment on 3 different document classification datasets -- RVL-CDIP, Tobacco3482, and DocLayNet -- and 3 different models -- ResNet, ConvNeXt, and DiT -- using well-established evaluation criteria such as validity, closeness, and realism. To the best of the authors' knowledge, this is the first work to explore generative counterfactual explanations in document image analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com