Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Tensorized Clustered LoRA Merging for Multi-Task Interference (2508.03999v1)

Published 6 Aug 2025 in cs.LG

Abstract: Despite the success of the monolithic dense paradigm of LLMs, the LoRA adapters offer an efficient solution by fine-tuning small task-specific modules and merging them with the base model. However, in multi-task settings, merging LoRA adapters trained on heterogeneous sources frequently causes \textit{task interference}, degrading downstream performance. To address this, we propose a tensorized clustered LoRA (TC-LoRA) library targeting to address the task interference at the \textit{text-level} and \textit{parameter-level}. At the \textit{text-level}, we cluster the training samples in the embedding space to capture input-format similarities, then train a specialized LoRA adapter for each cluster. At the \textit{parameter-level}, we introduce a joint Canonical Polyadic (CP) decomposition that disentangles task-specific and shared factors across LoRA adapters. This joint factorization preserves essential knowledge while reducing cross-task interference. Extensive experiments on out-of-domain zero-shot and skill-composition tasks-including reasoning, question answering, and coding. Compared to strong SVD-based baselines, TC-LoRA achieves +1.4\% accuracy on Phi-3 and +2.3\% on Mistral-7B (+2.3\%), demonstrating the effectiveness of TC-LoRA in LLM adaptation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com