Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Fidelity Stochastic Trust Region Method with Adaptive Sampling (2508.03901v1)

Published 5 Aug 2025 in math.OC

Abstract: Simulation optimization is often hindered by the high cost of running simulations. Multi-fidelity methods offer a promising solution by incorporating cheaper, lower-fidelity simulations to reduce computational time. However, the bias in low-fidelity models can mislead the search, potentially steering solutions away from the high-fidelity optimum. To overcome this, we propose ASTRO-MFDF, an adaptive sampling trust-region method for multi-fidelity simulation optimization. ASTRO-MFDF features two key strategies: (i) it adaptively determines the sample size and selects appropriate sampling strategies to reduce computational cost; and (ii) it selectively uses low-fidelity information only when a high correlation with the high-fidelity is anticipated, reducing the risk of bias. We validate the performance and computational efficiency of ASTRO-MFDF through numerical experiments using the SimOpt library.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.