Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

When Agents Break Down in Multiagent Path Finding (2508.03777v1)

Published 5 Aug 2025 in cs.MA and cs.AI

Abstract: In Multiagent Path Finding (MAPF), the goal is to compute efficient, collision-free paths for multiple agents navigating a network from their sources to targets, minimizing the schedule's makespan-the total time until all agents reach their destinations. We introduce a new variant that formally models scenarios where some agents may experience delays due to malfunctions, posing significant challenges for maintaining optimal schedules. Recomputing an entirely new schedule from scratch after each malfunction is often computationally infeasible. To address this, we propose a framework for dynamic schedule adaptation that does not rely on full replanning. Instead, we develop protocols enabling agents to locally coordinate and adjust their paths on the fly. We prove that following our primary communication protocol, the increase in makespan after k malfunctions is bounded by k additional turns, effectively limiting the impact of malfunctions on overall efficiency. Moreover, recognizing that agents may have limited computational capabilities, we also present a secondary protocol that shifts the necessary computations onto the network's nodes, ensuring robustness without requiring enhanced agent processing power. Our results demonstrate that these protocols provide a practical, scalable approach to resilient multiagent navigation in the face of agent failures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.