Papers
Topics
Authors
Recent
2000 character limit reached

Development of management systems using artificial intelligence systems and machine learning methods for boards of directors (preprint, unofficial translation) (2508.03769v1)

Published 5 Aug 2025 in cs.CY, cs.AI, and cs.LG

Abstract: The study addresses the paradigm shift in corporate management, where AI is moving from a decision support tool to an autonomous decision-maker, with some AI systems already appointed to leadership roles in companies. A central problem identified is that the development of AI technologies is far outpacing the creation of adequate legal and ethical guidelines. The research proposes a "reference model" for the development and implementation of autonomous AI systems in corporate management. This model is based on a synthesis of several key components to ensure legitimate and ethical decision-making. The model introduces the concept of "computational law" or "algorithmic law". This involves creating a separate legal framework for AI systems, with rules and regulations translated into a machine-readable, algorithmic format to avoid the ambiguity of natural language. The paper emphasises the need for a "dedicated operational context" for autonomous AI systems, analogous to the "operational design domain" for autonomous vehicles. This means creating a specific, clearly defined environment and set of rules within which the AI can operate safely and effectively. The model advocates for training AI systems on controlled, synthetically generated data to ensure fairness and ethical considerations are embedded from the start. Game theory is also proposed as a method for calculating the optimal strategy for the AI to achieve its goals within these ethical and legal constraints. The provided analysis highlights the importance of explainable AI (XAI) to ensure the transparency and accountability of decisions made by autonomous systems. This is crucial for building trust and for complying with the "right to explanation".

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.