Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LRTuckerRep: Low-rank Tucker Representation Model for Multi-dimensional Data Completion (2508.03755v1)

Published 4 Aug 2025 in cs.LG, cs.CV, cs.NA, and math.NA

Abstract: Multi-dimensional data completion is a critical problem in computational sciences, particularly in domains such as computer vision, signal processing, and scientific computing. Existing methods typically leverage either global low-rank approximations or local smoothness regularization, but each suffers from notable limitations: low-rank methods are computationally expensive and may disrupt intrinsic data structures, while smoothness-based approaches often require extensive manual parameter tuning and exhibit poor generalization. In this paper, we propose a novel Low-Rank Tucker Representation (LRTuckerRep) model that unifies global and local prior modeling within a Tucker decomposition. Specifically, LRTuckerRep encodes low rankness through a self-adaptive weighted nuclear norm on the factor matrices and a sparse Tucker core, while capturing smoothness via a parameter-free Laplacian-based regularization on the factor spaces. To efficiently solve the resulting nonconvex optimization problem, we develop two iterative algorithms with provable convergence guarantees. Extensive experiments on multi-dimensional image inpainting and traffic data imputation demonstrate that LRTuckerRep achieves superior completion accuracy and robustness under high missing rates compared to baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: