Privileged Contrastive Pretraining for Multimodal Affect Modelling (2508.03729v1)
Abstract: Affective Computing (AC) has made significant progress with the advent of deep learning, yet a persistent challenge remains: the reliable transfer of affective models from controlled laboratory settings (in-vitro) to uncontrolled real-world environments (in-vivo). To address this challenge we introduce the Privileged Contrastive Pretraining (PriCon) framework according to which models are first pretrained via supervised contrastive learning (SCL) and then act as teacher models within a Learning Using Privileged Information (LUPI) framework. PriCon both leverages privileged information during training and enhances the robustness of derived affect models via SCL. Experiments conducted on two benchmark affective corpora, RECOLA and AGAIN, demonstrate that models trained using PriCon consistently outperform LUPI and end to end models. Remarkably, in many cases, PriCon models achieve performance comparable to models trained with access to all modalities during both training and testing. The findings underscore the potential of PriCon as a paradigm towards further bridging the gap between in-vitro and in-vivo affective modelling, offering a scalable and practical solution for real-world applications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.