Papers
Topics
Authors
Recent
2000 character limit reached

Privileged Contrastive Pretraining for Multimodal Affect Modelling (2508.03729v1)

Published 30 Jul 2025 in cs.LG, cs.HC, and cs.MM

Abstract: Affective Computing (AC) has made significant progress with the advent of deep learning, yet a persistent challenge remains: the reliable transfer of affective models from controlled laboratory settings (in-vitro) to uncontrolled real-world environments (in-vivo). To address this challenge we introduce the Privileged Contrastive Pretraining (PriCon) framework according to which models are first pretrained via supervised contrastive learning (SCL) and then act as teacher models within a Learning Using Privileged Information (LUPI) framework. PriCon both leverages privileged information during training and enhances the robustness of derived affect models via SCL. Experiments conducted on two benchmark affective corpora, RECOLA and AGAIN, demonstrate that models trained using PriCon consistently outperform LUPI and end to end models. Remarkably, in many cases, PriCon models achieve performance comparable to models trained with access to all modalities during both training and testing. The findings underscore the potential of PriCon as a paradigm towards further bridging the gap between in-vitro and in-vivo affective modelling, offering a scalable and practical solution for real-world applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.