Papers
Topics
Authors
Recent
2000 character limit reached

Suggest, Complement, Inspire: Story of Two Tower Recommendations at Allegro.com (2508.03702v1)

Published 19 Jul 2025 in cs.IR and cs.LG

Abstract: Building large-scale e-commerce recommendation systems requires addressing three key technical challenges: (1) designing a universal recommendation architecture across dozens of placements, (2) decreasing excessive maintenance costs, and (3) managing a highly dynamic product catalogue. This paper presents a unified content-based recommendation system deployed at Allegro.com, the largest e-commerce platform of European origin. The system is built on a prevalent Two Tower retrieval framework, representing products using textual and structured attributes, which enables efficient retrieval via Approximate Nearest Neighbour search. We demonstrate how the same model architecture can be adapted to serve three distinct recommendation tasks: similarity search, complementary product suggestions, and inspirational content discovery, by modifying only a handful of components in either the model or the serving logic. Extensive A/B testing over two years confirms significant gains in engagement and profit-based metrics across desktop and mobile app channels. Our results show that a flexible, scalable architecture can serve diverse user intents with minimal maintenance overhead.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.