Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning quadratic neural networks in high dimensions: SGD dynamics and scaling laws (2508.03688v1)

Published 5 Aug 2025 in stat.ML and cs.LG

Abstract: We study the optimization and sample complexity of gradient-based training of a two-layer neural network with quadratic activation function in the high-dimensional regime, where the data is generated as $y \propto \sum_{j=1}{r}\lambda_j \sigma\left(\langle \boldsymbol{\theta_j}, \boldsymbol{x}\rangle\right), \boldsymbol{x} \sim N(0,\boldsymbol{I}d)$, $\sigma$ is the 2nd Hermite polynomial, and $\lbrace\boldsymbol{\theta}_j \rbrace{j=1}{r} \subset \mathbb{R}d$ are orthonormal signal directions. We consider the extensive-width regime $r \asymp d\beta$ for $\beta \in [0, 1)$, and assume a power-law decay on the (non-negative) second-layer coefficients $\lambda_j\asymp j{-\alpha}$ for $\alpha \geq 0$. We present a sharp analysis of the SGD dynamics in the feature learning regime, for both the population limit and the finite-sample (online) discretization, and derive scaling laws for the prediction risk that highlight the power-law dependencies on the optimization time, sample size, and model width. Our analysis combines a precise characterization of the associated matrix Riccati differential equation with novel matrix monotonicity arguments to establish convergence guarantees for the infinite-dimensional effective dynamics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: