Papers
Topics
Authors
Recent
2000 character limit reached

Vision-based Perception System for Automated Delivery Robot-Pedestrians Interactions (2508.03541v1)

Published 5 Aug 2025 in cs.RO and cs.LG

Abstract: The integration of Automated Delivery Robots (ADRs) into pedestrian-heavy urban spaces introduces unique challenges in terms of safe, efficient, and socially acceptable navigation. We develop the complete pipeline for a single vision sensor based multi-pedestrian detection and tracking, pose estimation, and monocular depth perception. Leveraging the real-world MOT17 dataset sequences, this study demonstrates how integrating human-pose estimation and depth cues enhances pedestrian trajectory prediction and identity maintenance, even under occlusions and dense crowds. Results show measurable improvements, including up to a 10% increase in identity preservation (IDF1), a 7% improvement in multiobject tracking accuracy (MOTA), and consistently high detection precision exceeding 85%, even in challenging scenarios. Notably, the system identifies vulnerable pedestrian groups supporting more socially aware and inclusive robot behaviour.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.