Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Evaluation of Large Language Models in Multilingual Vulnerability Repair (2508.03470v1)

Published 5 Aug 2025 in cs.SE

Abstract: Various Deep Learning-based approaches with pre-trained LLMs have been proposed for automatically repairing software vulnerabilities. However, these approaches are limited to a specific programming language (C/C++). Recent advances in LLMs offer language-agnostic capabilities and strong semantic understanding, exhibiting potential to overcome multilingual vulnerability limitations. Although some work has begun to explore LLMs' repair performance, their effectiveness is unsatisfactory. To address these limitations, we conducted a large-scale empirical study to investigate the performance of automated vulnerability repair approaches and state-of-the-art LLMs across seven programming languages. Results show GPT-4o, instruction-tuned with few-shot prompting, performs competitively against the leading approach, VulMaster. Additionally, the LLM-based approach shows superior performance in repairing unique vulnerabilities and is more likely to repair the most dangerous vulnerabilities. Instruction-tuned GPT-4o demonstrates strong generalization on vulnerabilities in previously unseen language, outperforming existing approaches. Analysis shows Go consistently achieves the highest effectiveness across all model types, while C/C++ performs the worst. Based on findings, we discuss the promise of LLM on multilingual vulnerability repair and the reasons behind LLM's failed cases. This work takes the first look at repair approaches and LLMs across multiple languages, highlighting the promising future of adopting LLMs for multilingual vulnerability repair.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.