Papers
Topics
Authors
Recent
2000 character limit reached

Beyond Illumination: Fine-Grained Detail Preservation in Extreme Dark Image Restoration (2508.03336v1)

Published 5 Aug 2025 in cs.CV

Abstract: Recovering fine-grained details in extremely dark images remains challenging due to severe structural information loss and noise corruption. Existing enhancement methods often fail to preserve intricate details and sharp edges, limiting their effectiveness in downstream applications like text and edge detection. To address these deficiencies, we propose an efficient dual-stage approach centered on detail recovery for dark images. In the first stage, we introduce a Residual Fourier-Guided Module (RFGM) that effectively restores global illumination in the frequency domain. RFGM captures inter-stage and inter-channel dependencies through residual connections, providing robust priors for high-fidelity frequency processing while mitigating error accumulation risks from unreliable priors. The second stage employs complementary Mamba modules specifically designed for textural structure refinement: (1) Patch Mamba operates on channel-concatenated non-downsampled patches, meticulously modeling pixel-level correlations to enhance fine-grained details without resolution loss. (2) Grad Mamba explicitly focuses on high-gradient regions, alleviating state decay in state space models and prioritizing reconstruction of sharp edges and boundaries. Extensive experiments on multiple benchmark datasets and downstream applications demonstrate that our method significantly improves detail recovery performance while maintaining efficiency. Crucially, the proposed modules are lightweight and can be seamlessly integrated into existing Fourier-based frameworks with minimal computational overhead. Code is available at https://github.com/bywlzts/RFGM.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.