Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SmartLLMs Scheduler: A Framework for Cost-Effective LLMs Utilization (2508.03258v1)

Published 5 Aug 2025 in cs.SE

Abstract: LLMs such as GPT-4 and Llama have shown remarkable capabilities in a variety of software engineering tasks. Despite the advancements, their practical deployment faces challenges, including high financial costs, long response time, and varying performance, especially when handling a large number of queries (jobs). Existing optimization strategies for deploying LLMs for diverse tasks focus on static scheduling, which requires extensive training data for performance prediction, increasing the computational costs and limiting the applicability and flexibility. In this paper, we propose the SmartLLMs Scheduler (SLS), a dynamic and cost-effective scheduling solution. The key idea is to learn LLMs' performance on diverse tasks and incorporate their real-time feedback to update strategies periodically. Specifically, SLS incorporates three key components, including an Adaptive Cache Manager, a Performance-Cost Optimized Scheduler, and a Dynamic Update Manager. The Cache Manager stores the outputs of previously processed queries and employs an adaptive strategy to reduce redundant computations and minimize response times. For queries not found in the cache, the Scheduler dynamically allocates them to the most suitable LLM based on the predicted performance and cost from models that take both query-specific and LLM-specific features as input. The Update Manager continuously refines the cache and scheduling strategies based on real-time feedback from the assigned queries to enhance decision-making and adapt to evolving task characteristics. To evaluate the effectiveness of SLS, we conduct extensive experiments on two LLM-based software engineering tasks, including log parsing and code generation. The results show that SLS significantly outperforms the baseline methods, achieving an average performance improvement of 198.82% and an average processing time reduction of 63.28%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com