Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Spatiotemporal wall pressure forecast of a rectangular cylinder with physics-aware DeepUFNet (2508.03183v1)

Published 5 Aug 2025 in physics.flu-dyn, cs.AI, and cs.CE

Abstract: The wall pressure is of great importance in understanding the forces and structural responses induced by fluid. Recent works have investigated the potential of deep learning techniques in predicting mean pressure coefficients and fluctuating pressure coefficients, but most of existing deep learning frameworks are limited to predicting a single snapshot using full spatial information. To forecast spatiotemporal wall pressure of flow past a rectangular cylinder, this study develops a physics-aware DeepU-Fourier neural Network (DeepUFNet) deep learning model. DeepUFNet comprises the UNet structure and the Fourier neural network, with physical high-frequency loss control embedded in the model training stage to optimize model performance, where the parameter $\beta$ varies with the development of the training epoch. Wind tunnel testing is performed to collect wall pressures of a two-dimensional rectangular cylinder with a side ratio of 1.5 at an angle of attack of zero using high-frequency pressure scanning, thereby constructing a database for DeepUFNet training and testing. The DeepUFNet model is found to forecast spatiotemporal wall pressure information with high accuracy. The comparison between forecast results and experimental data presents agreement in statistical information, temporal pressure variation, power spectrum density, spatial distribution, and spatiotemporal correlation. It is also found that embedding a physical high-frequency loss control coefficient $\beta$ in the DeepUFNet model can significantly improve model performance in forecasting spatiotemporal wall pressure information, in particular, in forecasting high-order frequency fluctuation and wall pressure variance. Furthermore, the DeepUFNet extrapolation capability is tested with sparse spatial information input, and the model presents a satisfactory extrapolation ability

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.