Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Frontier: Simulating the Next Generation of LLM Inference Systems (2508.03148v1)

Published 5 Aug 2025 in cs.LG, cs.AI, and cs.DC

Abstract: LLM inference is growing increasingly complex with the rise of Mixture-of-Experts (MoE) models and disaggregated architectures that decouple components like prefill/decode (PD) or attention/FFN (AF) for heterogeneous scaling. Existing simulators, architected for co-located, dense models, are unable to capture the intricate system dynamics of these emerging paradigms. We present Frontier, a high-fidelity simulator designed from the ground up for this new landscape. Frontier introduces a unified framework to model both co-located and disaggregated systems, providing native support for MoE inference with expert parallelism (EP). It enables the simulation of complex workflows like cross-cluster expert routing and advanced pipelining strategies for latency hiding. To ensure fidelity and usability, Frontier incorporates refined operator models for improved accuracy. Frontier empowers the community to design and optimize the future of LLM inference at scale.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.