Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Distributionally Robust Markov Games with Average Reward (2508.03136v1)

Published 5 Aug 2025 in cs.MA

Abstract: This paper introduces the formulation of a distributionally robust Markov game (DR-MG) with average rewards, a crucial framework for multi-agent decision-making under uncertainty over extended horizons. Unlike finite-horizon or discounted models, the average-reward criterion naturally captures long-term performance for systems designed for continuous operation, where sustained reliability is paramount. We account for uncertainty in transition kernels, with players aiming to optimize their worst-case average reward. We first establish a connection between the multi-agent and single agent settings, and derive the solvability of the robust Bellman equation under the average-reward formulation. We then rigorously prove the existence of a robust Nash Equilibrium (NE), offering essential theoretical guarantees for system stability. We further develop and analyze an algorithm named robust Nash-Iteration to compute the robust Nash Equilibria among all agents, providing practical tools for identifying optimal strategies in complex, uncertain, and long-running multi-player environments. Finally, we demonstrate the connection between the average-reward NE and the well-studied discounted NEs, showing that the former can be approximated as the discount factor approaches one. Together, these contributions provide a comprehensive theoretical and algorithmic foundation for identifying optimal strategies in complex, uncertain, and long-running multi-player environments, which allow for the future extension of robust average-reward single-agent problems to the multi-agent setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: