Papers
Topics
Authors
Recent
2000 character limit reached

AgentSME for Simulating Diverse Communication Modes in Smart Education

Published 5 Aug 2025 in cs.AI | (2508.03109v1)

Abstract: Generative agent models specifically tailored for smart education are critical, yet remain relatively underdeveloped. A key challenge stems from the inherent complexity of educational contexts: learners are human beings with various cognitive behaviors, and pedagogy is fundamentally centered on personalized human-to-human communication. To address this issue, this paper proposes AgentSME, a unified generative agent framework powered by LLM. Three directional communication modes are considered in the models, namely Solo, Mono, and Echo, reflecting different types of agency autonomy and communicative reciprocity. Accuracy is adopted as the primary evaluation metric, complemented by three diversity indices designed to assess the diversity of reasoning contents. Six widely used LLMs are tested to validate the robustness of communication modes across different model tiers, which are equally divided into base-capacity and high-capacity configurations. The results show that generative agents that employ the Echo communication mode achieve the highest accuracy scores, while DeepSeek exhibits the greatest diversity. This study provides valuable information to improve agent learning capabilities and inspire smart education models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.