Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

BoostTransformer: Enhancing Transformer Models with Subgrid Selection and Importance Sampling (2508.02924v1)

Published 4 Aug 2025 in cs.LG and stat.ML

Abstract: Transformer architectures dominate modern NLP but often demand heavy computational resources and intricate hyperparameter tuning. To mitigate these challenges, we propose a novel framework, BoostTransformer, that augments transformers with boosting principles through subgrid token selection and importance-weighted sampling. Our method incorporates a least square boosting objective directly into the transformer pipeline, enabling more efficient training and improved performance. Across multiple fine-grained text classification benchmarks, BoostTransformer demonstrates both faster convergence and higher accuracy, surpassing standard transformers while minimizing architectural search overhead.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com