Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Highlight & Summarize: RAG without the jailbreaks (2508.02872v1)

Published 4 Aug 2025 in cs.CL and cs.LG

Abstract: Preventing jailbreaking and model hijacking of LLMs is an important yet challenging task. For example, when interacting with a chatbot, malicious users can input specially crafted prompts to cause the LLM to generate undesirable content or perform a completely different task from its intended purpose. Existing mitigations for such attacks typically rely on hardening the LLM's system prompt or using a content classifier trained to detect undesirable content or off-topic conversations. However, these probabilistic approaches are relatively easy to bypass due to the very large space of possible inputs and undesirable outputs. In this paper, we present and evaluate Highlight & Summarize (H&S), a new design pattern for retrieval-augmented generation (RAG) systems that prevents these attacks by design. The core idea is to perform the same task as a standard RAG pipeline (i.e., to provide natural language answers to questions, based on relevant sources) without ever revealing the user's question to the generative LLM. This is achieved by splitting the pipeline into two components: a highlighter, which takes the user's question and extracts relevant passages ("highlights") from the retrieved documents, and a summarizer, which takes the highlighted passages and summarizes them into a cohesive answer. We describe several possible instantiations of H&S and evaluate their generated responses in terms of correctness, relevance, and response quality. Surprisingly, when using an LLM-based highlighter, the majority of H&S responses are judged to be better than those of a standard RAG pipeline.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 9 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

alphaXiv

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube