Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Sliced Fused Gromov-Wasserstein Distance (2508.02364v1)

Published 4 Aug 2025 in cs.LG and math.OC

Abstract: The Gromov--Wasserstein (GW) distance and its fused extension (FGW) are powerful tools for comparing heterogeneous data. Their computation is, however, challenging since both distances are based on non-convex, quadratic optimal transport (OT) problems. Leveraging 1D OT, a sliced version of GW has been proposed to lower the computational burden. Unfortunately, this sliced version is restricted to Euclidean geometry and loses invariance to isometries, strongly limiting its application in practice. To overcome these issues, we propose a novel slicing technique for GW as well as for FGW that is based on an appropriate lower bound, hierarchical OT, and suitable quadrature rules for the underlying 1D OT problems. Our novel sliced FGW significantly reduces the numerical effort while remaining invariant to isometric transformations and allowing the comparison of arbitrary geometries. We show that our new distance actually defines a pseudo-metric for structured spaces that bounds FGW from below and study its interpolation properties between sliced Wasserstein and GW. Since we avoid the underlying quadratic program, our sliced distance is numerically more robust and reliable than the original GW and FGW distance; especially in the context of shape retrieval and graph isomorphism testing.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.