Papers
Topics
Authors
Recent
2000 character limit reached

From Generation to Consumption: Personalized List Value Estimation for Re-ranking (2508.02242v1)

Published 4 Aug 2025 in cs.IR

Abstract: Re-ranking is critical in recommender systems for optimizing the order of recommendation lists, thus improving user satisfaction and platform revenue. Most existing methods follow a generator-evaluator paradigm, where the evaluator estimates the overall value of each candidate list. However, they often ignore the fact that users may exit before consuming the full list, leading to a mismatch between estimated generation value and actual consumption value. To bridge this gap, we propose CAVE, a personalized Consumption-Aware list Value Estimation framework. CAVE formulates the list value as the expectation over sub-list values, weighted by user-specific exit probabilities at each position. The exit probability is decomposed into an interest-driven component and a stochastic component, the latter modeled via a Weibull distribution to capture random external factors such as fatigue. By jointly modeling sub-list values and user exit behavior, CAVE yields a more faithful estimate of actual list consumption value. We further contribute three large-scale real-world list-wise benchmarks from the Kuaishou platform, varying in size and user activity patterns. Extensive experiments on these benchmarks, two Amazon datasets, and online A/B testing on Kuaishou show that CAVE consistently outperforms strong baselines, highlighting the benefit of explicitly modeling user exits in re-ranking.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 1 like about this paper.