Papers
Topics
Authors
Recent
2000 character limit reached

Constrained Reinforcement Learning for Unstable Point-Feet Bipedal Locomotion Applied to the Bolt Robot (2508.02194v1)

Published 4 Aug 2025 in cs.RO

Abstract: Bipedal locomotion is a key challenge in robotics, particularly for robots like Bolt, which have a point-foot design. This study explores the control of such underactuated robots using constrained reinforcement learning, addressing their inherent instability, lack of arms, and limited foot actuation. We present a methodology that leverages Constraints-as-Terminations and domain randomization techniques to enable sim-to-real transfer. Through a series of qualitative and quantitative experiments, we evaluate our approach in terms of balance maintenance, velocity control, and responses to slip and push disturbances. Additionally, we analyze autonomy through metrics like the cost of transport and ground reaction force. Our method advances robust control strategies for point-foot bipedal robots, offering insights into broader locomotion.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.