Subject or Style: Adaptive and Training-Free Mixture of LoRAs (2508.02165v1)
Abstract: Fine-tuning models via Low-Rank Adaptation (LoRA) demonstrates remarkable performance in subject-driven or style-driven generation tasks. Studies have explored combinations of different LoRAs to jointly generate learned styles and content. However, current methods struggle to balance the original subject and style, and often require additional training. Recently, K-LoRA proposed a training-free LoRA fusion method. But it involves multiple hyperparameters, making it difficult to adapt to all styles and subjects. In this paper, we propose EST-LoRA, a training-free adaptive LoRA fusion method. It comprehensively considers three critical factors: \underline{E}nergy of matrix, \underline{S}tyle discrepancy scores and \underline{T}ime steps. Analogous to the Mixture of Experts (MoE) architecture, the model adaptively selects between subject LoRA and style LoRA within each attention layer. This integrated selection mechanism ensures balanced contributions from both components during the generation process. Experimental results show that EST-LoRA outperforms state-of-the-art methods in both qualitative and quantitative evaluations and achieves faster generation speed compared to other efficient fusion approaches. Our code is publicly available at: https://anonymous.4open.science/r/EST-LoRA-F318.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.