Papers
Topics
Authors
Recent
2000 character limit reached

Coward: Toward Practical Proactive Federated Backdoor Defense via Collision-based Watermark

Published 4 Aug 2025 in cs.CR and cs.AI | (2508.02115v1)

Abstract: Backdoor detection is currently the mainstream defense against backdoor attacks in federated learning (FL), where malicious clients upload poisoned updates that compromise the global model and undermine the reliability of FL deployments. Existing backdoor detection techniques fall into two categories, including passive and proactive ones, depending on whether the server proactively modifies the global model. However, both have inherent limitations in practice: passive defenses are vulnerable to common non-i.i.d. data distributions and random participation of FL clients, whereas current proactive defenses suffer inevitable out-of-distribution (OOD) bias because they rely on backdoor co-existence effects. To address these issues, we introduce a new proactive defense, dubbed Coward, inspired by our discovery of multi-backdoor collision effects, in which consecutively planted, distinct backdoors significantly suppress earlier ones. In general, we detect attackers by evaluating whether the server-injected, conflicting global watermark is erased during local training rather than retained. Our method preserves the advantages of proactive defenses in handling data heterogeneity (\ie, non-i.i.d. data) while mitigating the adverse impact of OOD bias through a revised detection mechanism. Extensive experiments on benchmark datasets confirm the effectiveness of Coward and its resilience to potential adaptive attacks. The code for our method would be available at https://github.com/still2009/cowardFL.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.