Papers
Topics
Authors
Recent
2000 character limit reached

ProCut: LLM Prompt Compression via Attribution Estimation (2508.02053v1)

Published 4 Aug 2025 in cs.CL and cs.LG

Abstract: In large-scale industrial LLM systems, prompt templates often expand to thousands of tokens as teams iteratively incorporate sections such as task instructions, few-shot examples, and heuristic rules to enhance robustness and coverage. This expansion leads to bloated prompts that are difficult to maintain and incur significant inference latency and serving costs. To address this, we introduce Prompt Compression via Attribution Estimation (ProCut), a flexible, LLM-agnostic, training-free framework that compresses prompts through attribution analysis. ProCut segments prompt templates into semantically meaningful units, quantifies their impact on task performance, and prunes low-utility components. Through extensive experiments on five public benchmark datasets and real-world industrial prompts, we show that ProCut achieves substantial prompt size reductions (78% fewer tokens in production) while maintaining or even slightly improving task performance (up to 62% better than alternative methods). We further introduce an LLM-driven attribution estimator that reduces compression latency by over 50%, and demonstrate that ProCut integrates seamlessly with existing prompt-optimization frameworks to produce concise, high-performing prompts.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.