Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Why Generate When You Can Transform? Unleashing Generative Attention for Dynamic Recommendation (2508.02050v1)

Published 4 Aug 2025 in cs.IR

Abstract: Sequential Recommendation (SR) focuses on personalizing user experiences by predicting future preferences based on historical interactions. Transformer models, with their attention mechanisms, have become the dominant architecture in SR tasks due to their ability to capture dependencies in user behavior sequences. However, traditional attention mechanisms, where attention weights are computed through query-key transformations, are inherently linear and deterministic. This fixed approach limits their ability to account for the dynamic and non-linear nature of user preferences, leading to challenges in capturing evolving interests and subtle behavioral patterns. Given that generative models excel at capturing non-linearity and probabilistic variability, we argue that generating attention distributions offers a more flexible and expressive alternative compared to traditional attention mechanisms. To support this claim, we present a theoretical proof demonstrating that generative attention mechanisms offer greater expressiveness and stochasticity than traditional deterministic approaches. Building upon this theoretical foundation, we introduce two generative attention models for SR, each grounded in the principles of Variational Autoencoders (VAE) and Diffusion Models (DMs), respectively. These models are designed specifically to generate adaptive attention distributions that better align with variable user preferences. Extensive experiments on real-world datasets show our models significantly outperform state-of-the-art in both accuracy and diversity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com