Papers
Topics
Authors
Recent
2000 character limit reached

Bench2ADVLM: A Closed-Loop Benchmark for Vision-language Models in Autonomous Driving (2508.02028v1)

Published 4 Aug 2025 in cs.CV

Abstract: Vision-LLMs (VLMs) have recently emerged as a promising paradigm in autonomous driving (AD). However, current performance evaluation protocols for VLM-based AD systems (ADVLMs) are predominantly confined to open-loop settings with static inputs, neglecting the more realistic and informative closed-loop setting that captures interactive behavior, feedback resilience, and real-world safety. To address this, we introduce Bench2ADVLM, a unified hierarchical closed-loop evaluation framework for real-time, interactive assessment of ADVLMs across both simulation and physical platforms. Inspired by dual-process theories of cognition, we first adapt diverse ADVLMs to simulation environments via a dual-system adaptation architecture. In this design, heterogeneous high-level driving commands generated by target ADVLMs (fast system) are interpreted by a general-purpose VLM (slow system) into standardized mid-level control actions suitable for execution in simulation. To bridge the gap between simulation and reality, we design a physical control abstraction layer that translates these mid-level actions into low-level actuation signals, enabling, for the first time, closed-loop testing of ADVLMs on physical vehicles. To enable more comprehensive evaluation, Bench2ADVLM introduces a self-reflective scenario generation module that automatically explores model behavior and uncovers potential failure modes for safety-critical scenario generation. Overall, Bench2ADVLM establishes a hierarchical evaluation pipeline that seamlessly integrates high-level abstract reasoning, mid-level simulation actions, and low-level real-world execution. Experiments on diverse scenarios across multiple state-of-the-art ADVLMs and physical platforms validate the diagnostic strength of our framework, revealing that existing ADVLMs still exhibit limited performance under closed-loop conditions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.