Papers
Topics
Authors
Recent
2000 character limit reached

OmniEvent: Unified Event Representation Learning (2508.01842v1)

Published 3 Aug 2025 in cs.CV

Abstract: Event cameras have gained increasing popularity in computer vision due to their ultra-high dynamic range and temporal resolution. However, event networks heavily rely on task-specific designs due to the unstructured data distribution and spatial-temporal (S-T) inhomogeneity, making it hard to reuse existing architectures for new tasks. We propose OmniEvent, the first unified event representation learning framework that achieves SOTA performance across diverse tasks, fully removing the need of task-specific designs. Unlike previous methods that treat event data as 3D point clouds with manually tuned S-T scaling weights, OmniEvent proposes a decouple-enhance-fuse paradigm, where the local feature aggregation and enhancement is done independently on the spatial and temporal domains to avoid inhomogeneity issues. Space-filling curves are applied to enable large receptive fields while improving memory and compute efficiency. The features from individual domains are then fused by attention to learn S-T interactions. The output of OmniEvent is a grid-shaped tensor, which enables standard vision models to process event data without architecture change. With a unified framework and similar hyper-parameters, OmniEvent out-performs (tasks-specific) SOTA by up to 68.2% across 3 representative tasks and 10 datasets (Fig.1). Code will be ready in https://github.com/Wickyan/OmniEvent .

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com