Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural Predictive Control to Coordinate Discrete- and Continuous-Time Models for Time-Series Analysis with Control-Theoretical Improvements (2508.01833v1)

Published 3 Aug 2025 in cs.LG and cs.AI

Abstract: Deep sequence models have achieved notable success in time-series analysis, such as interpolation and forecasting. Recent advances move beyond discrete-time architectures like Recurrent Neural Networks (RNNs) toward continuous-time formulations such as the family of Neural Ordinary Differential Equations (Neural ODEs). Generally, they have shown that capturing the underlying dynamics is beneficial for generic tasks like interpolation, extrapolation, and classification. However, existing methods approximate the dynamics using unconstrained neural networks, which struggle to adapt reliably under distributional shifts. In this paper, we recast time-series problems as the continuous ODE-based optimal control problem. Rather than learning dynamics solely from data, we optimize control actions that steer ODE trajectories toward task objectives, bringing control-theoretical performance guarantees. To achieve this goal, we need to (1) design the appropriate control actions and (2) apply effective optimal control algorithms. As the actions should contain rich context information, we propose to employ the discrete-time model to process past sequences and generate actions, leading to a coordinate model to extract long-term temporal features to modulate short-term continuous dynamics. During training, we apply model predictive control to plan multi-step future trajectories, minimize a task-specific cost, and greedily select the optimal current action. We show that, under mild assumptions, this multi-horizon optimization leads to exponential convergence to infinite-horizon solutions, indicating that the coordinate model can gain robust and generalizable performance. Extensive experiments on diverse time-series datasets validate our method's superior generalization and adaptability compared to state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com