Papers
Topics
Authors
Recent
2000 character limit reached

Vision transformer-based multi-camera multi-object tracking framework for dairy cow monitoring (2508.01752v1)

Published 3 Aug 2025 in cs.CV and cs.AI

Abstract: Activity and behaviour correlate with dairy cow health and welfare, making continual and accurate monitoring crucial for disease identification and farm productivity. Manual observation and frequent assessments are laborious and inconsistent for activity monitoring. In this study, we developed a unique multi-camera, real-time tracking system for indoor-housed Holstein Friesian dairy cows. This technology uses cutting-edge computer vision techniques, including instance segmentation and tracking algorithms to monitor cow activity seamlessly and accurately. An integrated top-down barn panorama was created by geometrically aligning six camera feeds using homographic transformations. The detection phase used a refined YOLO11-m model trained on an overhead cow dataset, obtaining high accuracy (mAP\@0.50 = 0.97, F1 = 0.95). SAMURAI, an upgraded Segment Anything Model 2.1, generated pixel-precise cow masks for instance segmentation utilizing zero-shot learning and motion-aware memory. Even with occlusion and fluctuating posture, a motion-aware Linear Kalman filter and IoU-based data association reliably identified cows over time for object tracking. The proposed system significantly outperformed Deep SORT Realtime. Multi-Object Tracking Accuracy (MOTA) was 98.7% and 99.3% in two benchmark video sequences, with IDF1 scores above 99% and near-zero identity switches. This unified multi-camera system can track dairy cows in complex interior surroundings in real time, according to our data. The system reduces redundant detections across overlapping cameras, maintains continuity as cows move between viewpoints, with the aim of improving early sickness prediction through activity quantification and behavioural classification.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com