Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improving Noise Efficiency in Privacy-preserving Dataset Distillation (2508.01749v1)

Published 3 Aug 2025 in cs.CV and cs.AI

Abstract: Modern machine learning models heavily rely on large datasets that often include sensitive and private information, raising serious privacy concerns. Differentially private (DP) data generation offers a solution by creating synthetic datasets that limit the leakage of private information within a predefined privacy budget; however, it requires a substantial amount of data to achieve performance comparable to models trained on the original data. To mitigate the significant expense incurred with synthetic data generation, Dataset Distillation (DD) stands out for its remarkable training and storage efficiency. This efficiency is particularly advantageous when integrated with DP mechanisms, curating compact yet informative synthetic datasets without compromising privacy. However, current state-of-the-art private DD methods suffer from a synchronized sampling-optimization process and the dependency on noisy training signals from randomly initialized networks. This results in the inefficient utilization of private information due to the addition of excessive noise. To address these issues, we introduce a novel framework that decouples sampling from optimization for better convergence and improves signal quality by mitigating the impact of DP noise through matching in an informative subspace. On CIFAR-10, our method achieves a \textbf{10.0\%} improvement with 50 images per class and \textbf{8.3\%} increase with just \textbf{one-fifth} the distilled set size of previous state-of-the-art methods, demonstrating significant potential to advance privacy-preserving DD.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube