Granular Concept Circuits: Toward a Fine-Grained Circuit Discovery for Concept Representations (2508.01728v1)
Abstract: Deep vision models have achieved remarkable classification performance by leveraging a hierarchical architecture in which human-interpretable concepts emerge through the composition of individual neurons across layers. Given the distributed nature of representations, pinpointing where specific visual concepts are encoded within a model remains a crucial yet challenging task. In this paper, we introduce an effective circuit discovery method, called Granular Concept Circuit (GCC), in which each circuit represents a concept relevant to a given query. To construct each circuit, our method iteratively assesses inter-neuron connectivity, focusing on both functional dependencies and semantic alignment. By automatically discovering multiple circuits, each capturing specific concepts within that query, our approach offers a profound, concept-wise interpretation of models and is the first to identify circuits tied to specific visual concepts at a fine-grained level. We validate the versatility and effectiveness of GCCs across various deep image classification models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.