Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization (2508.01725v1)
Abstract: Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. We present CcGAN-AVAR, an enhanced CcGAN framework that addresses both challenges: (1) leveraging the GAN framework's native one-step generation to overcome CCDMs' sampling bottleneck (achieving 300x-2000x faster inference), while (2) two novel components specifically target data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity's size, and a multi-task discriminator that constructs two regularization terms (through auxiliary regression and density ratio estimation) to significantly improve generator training. Extensive experiments on four benchmark datasets (64x64 to 192x192 resolution) across eight challenging imbalanced settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.