Papers
Topics
Authors
Recent
2000 character limit reached

Innovative tokenisation of structured data for LLM training (2508.01685v1)

Published 3 Aug 2025 in cs.LG and cs.CR

Abstract: Data representation remains a fundamental challenge in machine learning, particularly when adapting sequence-based architectures like Transformers and LLMs for structured tabular data. Existing methods often fail to cohesively encode the mix of numerical and categorical features or preserve the inherent structure of tables. This paper introduces a novel, hybrid tokenisation methodology designed to convert tabular data into a unified, sequential format suitable for LLM training. Our approach combines predefined fixed tokens to represent structural elements and low-cardinality categorical features, with a learned subword vocabulary using Byte-Pair Encoding (BPE) for high-cardinality and continuous values. We demonstrate the efficacy of this technique by applying it to a large-scale NetFlow dataset (CIDDS-001), preparing a corpus for a Network Intrusion Detection System (NIDS) foundation model. The evaluation shows that our method is highly efficient, processing over 31 million network flows in under five hours and achieving a significant data compression ratio of 6.18:1. This process resulted in a computationally manageable corpus of over one billion tokens, establishing a viable and generalisable pathway for training foundation models on structured data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.