Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generalized Kernelized Bandits: Self-Normalized Bernstein-Like Dimension-Free Inequality and Regret Bounds (2508.01681v1)

Published 3 Aug 2025 in cs.LG and stat.ML

Abstract: We study the regret minimization problem in the novel setting of generalized kernelized bandits (GKBs), where we optimize an unknown function $f*$ belonging to a reproducing kernel Hilbert space (RKHS) having access to samples generated by an exponential family (EF) noise model whose mean is a non-linear function $\mu(f*)$. This model extends both kernelized bandits (KBs) and generalized linear bandits (GLBs). We propose an optimistic algorithm, GKB-UCB, and we explain why existing self-normalized concentration inequalities do not allow to provide tight regret guarantees. For this reason, we devise a novel self-normalized Bernstein-like dimension-free inequality resorting to Freedman's inequality and a stitching argument, which represents a contribution of independent interest. Based on it, we conduct a regret analysis of GKB-UCB, deriving a regret bound of order $\widetilde{O}( \gamma_T \sqrt{T/\kappa_})$, being $T$ the learning horizon, ${\gamma}T$ the maximal information gain, and $\kappa$ a term characterizing the magnitude the reward nonlinearity. Our result matches, up to multiplicative constants and logarithmic terms, the state-of-the-art bounds for both KBs and GLBs and provides a unified view of both settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube