Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DAG: Unleash the Potential of Diffusion Model for Open-Vocabulary 3D Affordance Grounding (2508.01651v1)

Published 3 Aug 2025 in cs.CV

Abstract: 3D object affordance grounding aims to predict the touchable regions on a 3d object, which is crucial for human-object interaction, human-robot interaction, embodied perception, and robot learning. Recent advances tackle this problem via learning from demonstration images. However, these methods fail to capture the general affordance knowledge within the image, leading to poor generalization. To address this issue, we propose to use text-to-image diffusion models to extract the general affordance knowledge because we find that such models can generate semantically valid HOI images, which demonstrate that their internal representation space is highly correlated with real-world affordance concepts. Specifically, we introduce the DAG, a diffusion-based 3d affordance grounding framework, which leverages the frozen internal representations of the text-to-image diffusion model and unlocks affordance knowledge within the diffusion model to perform 3D affordance grounding. We further introduce an affordance block and a multi-source affordance decoder to endow 3D dense affordance prediction. Extensive experimental evaluations show that our model excels over well-established methods and exhibits open-world generalization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube