Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Privacy-Preserving Inference for Quantized BERT Models (2508.01636v1)

Published 3 Aug 2025 in cs.LG and cs.CR

Abstract: With the increasing deployment of generative machine learning models in privacy-sensitive domains such as healthcare and personalized services, ensuring secure inference has become a critical challenge. Secure multi-party computation (MPC) enables privacy-preserving model inference but suffers from high communication and computation overhead. The main bottleneck lies in the expensive secure evaluation of floating-point operations. Quantization offers a promising solution by converting floating-point operations into lower-precision integer computations, significantly reducing overhead. However, existing MPC-based quantized inference methods either rely on public quantization parameters-posing privacy risks-or suffer from inefficiencies, particularly in handling nonlinear functions such as activations and softmax. In this work, we propose a fine-grained, layer-wise quantization scheme and support 1-bit weight fully connected layers in a secure setting. We design a multi-input lookup table protocol to evaluate softmax efficiently and securely. Furthermore, we use dual secret sharing schemes and perform precision conversions via lookup tables, eliminating truncation overhead entirely. Experimental evaluation on BERT-base models demonstrates that our approach achieves up to $8\times$ speedup compared to Lu \emph{et al}. (NDSS 25), $9\times$ speedup compared to Gupta \emph{et al}. (PETS 24) and $22 \times$ speedup compared to Knott \emph{et al}. (NeurIPS 21).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.