Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FluidFormer: Transformer with Continuous Convolution for Particle-based Fluid Simulation (2508.01537v1)

Published 3 Aug 2025 in cs.CE, cs.GR, cs.LG, and physics.flu-dyn

Abstract: Learning-based fluid simulation networks have been proven as viable alternatives to traditional numerical solvers for the Navier-Stokes equations. Existing neural methods follow Smoothed Particle Hydrodynamics (SPH) frameworks, which inherently rely only on local inter-particle interactions. However, we emphasize that global context integration is also essential for learning-based methods to stabilize complex fluid simulations. We propose the first Fluid Attention Block (FAB) with a local-global hierarchy, where continuous convolutions extract local features while self-attention captures global dependencies. This fusion suppresses the error accumulation and models long-range physical phenomena. Furthermore, we pioneer the first Transformer architecture specifically designed for continuous fluid simulation, seamlessly integrated within a dual-pipeline architecture. Our method establishes a new paradigm for neural fluid simulation by unifying convolution-based local features with attention-based global context modeling. FluidFormer demonstrates state-of-the-art performance, with stronger stability in complex fluid scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube