Papers
Topics
Authors
Recent
2000 character limit reached

NICE^k Metrics: Unified and Multidimensional Framework for Evaluating Deterministic Solar Forecasting Accuracy (2508.01457v1)

Published 2 Aug 2025 in physics.ao-ph and stat.ML

Abstract: Accurate solar energy output prediction is key for integrating renewables into grids, maintaining stability, and improving energy management. However, standard error metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Skill Scores (SS) fail to capture the multidimensional nature of solar irradiance forecasting. These metrics lack sensitivity to forecastability, rely on arbitrary baselines (e.g., clear-sky models), and are poorly suited for operational use. To address this, we introduce the NICEk framework (Normalized Informed Comparison of Errors, with k = 1, 2, 3, Sigma), offering a robust and interpretable evaluation of forecasting models. Each NICEk score corresponds to an Lk norm: NICE1 targets average errors, NICE2 emphasizes large deviations, NICE3 highlights outliers, and NICESigma combines all. Using Monte Carlo simulations and data from 68 stations in the Spanish SIAR network, we evaluated methods including autoregressive models, extreme learning, and smart persistence. Theoretical and empirical results align when assumptions hold (e.g., R2 ~ 1.0 for NICE2). Most importantly, NICESigma consistently shows higher discriminative power (p < 0.05), outperforming traditional metrics (p > 0.05). The NICEk metrics exhibit stronger statistical significance (e.g., p-values from 10-6 to 0.004 across horizons) and greater generalizability. They offer a unified and operational alternative to standard error metrics in deterministic solar forecasting.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.